• Sie verwenden einen veralteten Webbrowser, weshalb es zu Problemen mit der Darstellung kommen kann. Bei Problemen mit der Bestellabgabe können Sie gerne auch telefonisch bestellen unter: 01805 917 917 (0,14€/min, mobil max.0,42€/min)

Graph Critical with Respect to Variants of Domination

Bosamiya:Graph Critical with Respect to
Autor: Jeegnesh Chhabilbhai Bosamiya / Dineshbhai Keshvlal Thakkar
Verfügbarkeit: nur noch 3 lieferbar
Artikelnummer: 740498
ISBN / EAN: 9783659286087

Verfügbarkeit: sofort lieferbar

59,00 €
Inkl. MwSt. , zzgl. Versandkosten

Produktbeschreibung

Chapter-0 provides an introduction to domination and its variants. Some fundamental results regarding domination and its variants, and historical background of domination In chapter-1 we define the concept of extended and total extended number for any graph. We also characterized those vertices whose removal increases or decreases or does not change extended total domination number of a graph. Chapter-2 contains the concept of independent domination and vertex covering of a graph.We prove that vertex covering number of graph never increase when a vertex is removed from the graph. We prove that if a graph vertex transitive graph then the intersection of all minimum vertex covering sets is empty. We also prove that a vertex transitive graph with even number of vertices is bipartite if and only if it has exactly two minimum vertex covering sets. chapter 3-4 contains total k-domination, k-tuple k-domination and k-dependent k-domination and perfect domination.Here also we define this concept and characterized those vertices whose removal increase or decreases the total k-domination number and k-tuple domination number and k-dependent k-domination number, perfect domination number.

Zusatzinformation

Autor Verlag LAP Lambert Academic Publishing
ISBN / EAN 9783659286087 Bindung Taschenbuch

Sie könnten auch an folgenden Produkten interessiert sein

0 Kundenmeinungen

Bitte schreiben Sie uns Ihre Meinung zu: Graph Critical with Respect to Variants of Domination

  • Wenn Sie dieses Eingabefeld sehen sollten, lassen Sie es leer!